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INTRODUCTION

With a wealth of statistics collected by the LHC most of our
measurements and searches are now systematics limited

Detector calibrations typically rely on data samples and
(to some extent) will also scale with the luminosity

For theory uncertainties this is not (trivially) the case and they will be a
limiting factors in both the LHC and HL-LHC physics program

| will give an overview of the current way theory uncertainties are
estimated in ATLAS analyses

Describe where we have identifled obvious bottlenecks as well as
promising theory developments

And point out where more effort from theory might lbe needed



HIGHER ORDERS (ICD)

%k For optimising analyses and estimate SM backgrounds we rely on
state-of-the-art NLO-merged accurate MC samples which are passed
through a simulation of the ATLAS detector
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They provide a good description of data up to the high jet multiplicities
probed by searches, and a reasonably “small” perturbative uncertainty
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e.g. V+jet production in ATLAS is simulated
with Sherpa MC with 0+1jet@NLO,
2+3jets@.O

As we extend our searches to even higher
jet multiplicities and more exclusive phase-
spaces, we go back to regions dominated
by the LO MEs or by the PS

Reaching even higher multiplicities would
be useful but these simulations are already
extremely expensive in terms of computing
resources, and might not scale well to the
needs of the HL-LHC


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2016-01

HIGHER ORDERS (ICD)

Scales and PDF variations are now routinely included in MC
samples as on-the-fly weights and used to estimate MHOU/PDF
uncertainties

Other explicit variations, related to the specific merging algorithm,
are also often used in evaluating uncertainties

merging and resummation scale in Sherpa, shower starting scale in
MC@NLO, hgamp iIn POwheg

And whenever possible we compare also to a different program
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HEAVY FLAVOURS

sk Description of heavy flavours crucial to model backgrounds
IN Many important measurements and searches
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-38/
https://arxiv.org/abs/1904.09382

HIGHER ORDERS (EW)

Higher orders in EW couplings are becoming more and more important
for both precision measurements and searches

In measurements these are typically computed with external codes applied
as additive/multiplicative k-factors on top of a FO or MC prediction

In searches these effects are mostly neglected, often on the ground that
they would be reabsorbed in data-driven bkg. estimates (but some

exceptions like Z’/W’ or monojet)
QED lepton FSR is instead essential and included in our simulation with
PHOTOS or by the parton shower, often in conjunction with QED ISR |
Orly recenty avaiable NG progras 1 #58 wra
Powheg implements NLO QCD

Total Syst. EW correc tions
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+ NLO EW corrections interfaced E
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to shower for selected processes e, LHCTORWG
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virtual corrections within its NLO-merging

Crucial development for future analyses
as EW Sudakov logs large at high-pT o2
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https://indico.cern.ch/event/888620/contributions/3851548/attachments/2038789/3413949/Slides_LHCTopWG_Modeling.pdf

RESUMMATION (SHOWER)

2k Parton shower perturbative uncertainties are often a dominant
source of uncertainty

For top and DY precision measurements we still rely on NLO+PS samples
for an accurate description of inclusive quantities and uncertainties in the
resummation region are (large and) important

NLO-merged samples often do not provide a good description of inclusive
quantities (Can this be fixed?) hence cannot/are not used
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-14/fig_06.png
https://indico.cern.ch/event/888620/contributions/3851548/attachments/2038789/3413949/Slides_LHCTopWG_Modeling.pdf

SHOWER UNCERTAINTIES

2k Uncertainties on parton shower predictions are typically estimated
by varying the ren. scale at which the emission is computed

Either by some variations determined by data or by factors 0.5,2

» These are now available as OTF weights, and included in most samples

2k Top production might be the best example, as our nominal MC
sample is an NLOPS sample with a “tuned” PowhegPythia8
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-009/

SHOWER UNCERTAINTIES

PS scale variations are handled differently by different programs
Sherpa varies scales coherently with the ME variations (and FSR,ISR)

Pythia includes and “NLO” compensation term and allows to vary ISR/FSR
scales independently (but cannot coherently change them in the ME)

We typically use whatever is the default in a given generator

We often find that differences between programs are not covered by
these uncertainties, and that other (formally subleading) effects give
large variations

E.g. evolution variable, shower recoils, alphaS evolution, ...

Most of the times a comparison with a different shower program is
included to account for both algorithmic choices in the PS
construction and to account for an uncertainty on MPI/had.

Can we get some better understanding on the approximation that
enter the shower constructions and how to build a realistic
uncertainty band?



AN EXAMPLE: W-MASS

*k W-mass measurement crucially relies on the description of the W pT

%k Forthe 7 TeV ATLAS measurement a prediction for the W pT was
obtained by “tuning” a Pythia8 prediction to the 7 TeV Z pT
measurement data and letting the program extrapolate it to W pT
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3k Crucial to obtain an estimate of effects which decorrelate between Z
and W (e.g. HF)

obtained varying the PS PDFs and mc and with independent variations of
Ur for each initial state process .



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-18/

FRAGMENTATION/HADRONIZATION

sk Typically included with the “usual” Pythia/Herwig sandwich which
convolves the effect of many things

Perturbative physics, fragmentation, hadronization, MPI, CR and the tune

2k Currently a bottleneck for many analyses, although usually unclear which
component is dominating the uncertainty

More acurrate estimates can be achieved, but usually require a significant
amount of effort/physics studies (examples later)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-15/figaux_22.png

TOP MASS AND FRAGMENTATION
3k Recent ATLAS top mass measurement using a soft muon from a
semileptonic decay of a b-hadron

2k Reduce the uncertainty from the JES but introduces an uncertainty
on the modelling of the b-quark—>soft-muon transition

11— # |hiS transition consists of a
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-046/

TOP MASS AND FRAGMENTATION

3k Recent ATLAS top mass measurement using a soft muon from a
semileptonic decay of a b-hadron

2k Reduce the uncertainty from the JES but introduces an uncertainty
on the modelling of the b-quark—>soft-muon transition

8000

Events / 5 GeV

6000

4000

20001~

1.05F

E%{S//é;// ////////////@///@///@///6/% /?//4/5; /5/{?/%

0.95F
0.9t

Data / Pred.

| ATLAS Preliminary
. Vs=13TeV, 36.1 fb™
- SS selection

— Post-Fit

1OOOOI_I I | I I | LI | L

I|IIII|IIII|IIII
¢ Data

[Jtt (smT from b/c) { B
[ ¢t (SMT fake) ‘
B Single top ]
[[]Other backgrounds |
722 Uncertainty

20 30 40

50 60 70 80
m,, [GeV]

A dedicated shower uncertainty is
derived by fitting the parameters of the
NP Lund hadronization model to LEP
measurements of b-quark
fragmentation

These are “retuned” also for the 2x,
0.5x variations of ur to compensate the
perturbative changes significantly
reducing their impact

The residual uncertainty from PS scales
on the evolution becomes subleading
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-046/

Non-perturbative correction factor

NON-PERTURBATIVE EFFECTS

2k To compare jet measurements to fixed-order prediction we need to
correct our particle-level measurement to parton-level
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Done by deriving a correction factor as: o(PS+had.+MPI)/ o(PS)
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Large differences are observed in the size
of these corrections between different MC
programs (Py8/H++),

Well beyond the spread given by using a
different shower tune

Should be possible to overcome by
constraining the relevant MC parameters
“In-situ” using jet-shapes or R-scan
measurements

But would lbe nice to have some
understanding of the MPI/had. effect
through “analytic” models as developed
for LEP event shapes
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2016-03

STATISTICAL INTERPRETATION OF
THEORY UNCERTAINTIES

Our analyses typically require a simultaneous statistical interpretation of
different phase-spaces and processes

While we might have an estimate of the uncertainty lband around our
predictions we have (almost) no theory guidance into how these
uncertainties should enter our statistical analyses

And this is becoming a limiting factor even more than the size of the
uncertainties themselves

Typical questions that arise are:
Should we treat scale variations as (symmetric?) Gaussian nuisance parameters
Should MHOU be correlated across the phase-space?
And for numerator and denominator in normalised cross-sections?
And for different (similar) processes, e.g. W and Z”?
Should MHOU in ME and PS (ISR/FSR) be correlated? And NP effects”?

And can we rely on the event generator pattern of correlations for MPIl/had.”?

|5



2k Arecent interesting development introduced by Pythia8 has been to
make available variations of the individual DGLAP splitting kernels,

kK

STATISTICAL INTERPRETATION
DODF PS UNGCERTAINTIES

and separate the contribution of their non-singular part

We could then think of the scale variations in the singular terms to

be universal, and allow them to be constrained by data or

calculations with higher log accuracy while keeping the non-singular

term variations as process-specific

s this something that can be “elevated” to a general
recommendation for shower uncertainties?
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SUMMARY

2k Theory progress is essential for the success of the LHC/HL-LHC
physics program

%k And event generators remain the unavoidable theory tool for most of
the analyses we do

*k Important to make simultaneous progress on several aspects:
Matching to higher-orders (NNLO)
Coherent inclusion of EW higher orders in QCD MC
Impact of subheading choices both in the matching/merging and shower
What is the PS accuracy and can it be improved

How to construct an event generator uncertainty banad

nterplay with PDFs (e.g. for MPIl and ISR)

How should these uncertainties be treated in statistical analyses”?

3k All this while keeping the computational cost under control
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